# Studies in Aryltin Chemistry. IX. Structures of Tetra(*m*-methoxyphenyl)tin(IV) and Tetra(*o*-methoxyphenyl)tin(IV)\*

BY I. WHARF

Department of Chemistry and Chemical Technology, Dawson College, 3040 Sherbrooke St W., Montreal, Que, Canada H3Z 1A4

and M. G. Simard

Département de Chimie, Université de Montréal, CP 6128, Succ. A, Montréal, Qué, Canada H3C 3J7

(Received 12 January 1994; accepted 13 March 1995)

## Abstract

The structures of tetra(m-methoxyphenyl)tin (1) and tetra(o-methoxyphenyl)tin (2) have been determined at 225 and 290 K, respectively. Crystal data: (1), m.p. 361.5-362.5 K, monoclinic, C2/c, a = 17.534 (5), b =9.908 (4), c = 30.011 (13) Å,  $\beta = 108.27 (3)^{\circ}$ , V =4951 (3) Å<sup>3</sup>, Z = 8,  $D_x$  = 1.468 Mg m<sup>-3</sup>,  $\mu$  = 1.06 mm<sup>-1</sup>, R = 0.021 for 3989 observed reflections  $[I \ge 3\sigma(I)]$ ; (2), m.p. 447–449 K, triclinic,  $P\bar{1}$ , a = 9.145 (6), b = 16.562(5), c = 18.010(8)Å,  $\alpha = 77.72(3), \beta =$ 78.52 (5),  $\gamma = 81.70 (4)^{\circ}$ ,  $V = 2597 (2) \text{ Å}^3$ , Z = 4,  $D_x = 1.399 \text{ Mg m}^{-3}, \ \mu = 8.24 \text{ mm}^{-1}, \ R = 0.037 \text{ for}$ 6993 observed reflections  $|I| \ge 3\sigma(I)$ ]. For (1), the molecular structure completely deviates from the usual  $\overline{4}$  symmetry found for the *para*-analogue, but molecules of (2) have distorted  $\overline{4}$  symmetries with the methoxy groups having the all-exo conformation. The occurrence of these unsymmetric structures is attributed to the need to maximize crystal lattice stability to offset, in the case of (1), the exigent packing requirements of the meta- $CH_3O$  groups, and in the case of (2), the intrinsically high molecular energy compared with the tetraphenyl archetype.

### Introduction

Tetra-aryl derivatives of Group 14 elements generally crystallize in close-packed tetragonal space groups  $(P\bar{4}2_1 \text{ or } I\bar{4})$  with the molecules having  $\bar{4}$  symmetry (Charisée, Roller & Dräger, 1992; Wharf & Simard, 1987). Empirical force-field calculations (Hutchings, Andose & Mislow, 1975) for the molecules  $Ar_4M$  [M = C, Si;  $Ar = C_6H_5$ , o-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>, 2,6-(CH<sub>3</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>] indicated that the ground state conformation of the molecule indeed has  $\bar{4}$  symmetry [except (C<sub>6</sub>H<sub>5</sub>)<sub>4</sub>C], while earlier less rigorous calculations (Kitaigorodskii, 1961), including both intra- and intermolecular non-

bonded forces, predicted a  $\overline{4}$  molecular ground state for all  $(C_6H_5)_4M$  (M = C, Si, Sn, Pb) with the most favoured crystal structures having molecules closely packed in one of three tetragonal space groups ( $P\bar{4}2_1c$ ,  $I\overline{4}$  or  $P4_2/n$ ). Using this model and experimental cell constants, Ahmed, Kitaigorodskii & Mirskaya (1971) were able to reproduce closely the experimentally determined molecular and cell parameters for  $(C_6H_5)_4M$ . Earlier, Kitaigorodskii (1961) had predicted that as para-hydrogens are replaced by larger substituents, the packing efficiency with tetragonal space groups would decrease and less symmetric crystal and molecular structures would then be preferred. This is indeed the case with the large para-substituents, CH<sub>3</sub>S(O<sub>2</sub>) (Wharf, Simard & Lamparski, 1990) and C<sub>2</sub>H<sub>5</sub>O (Wharf & Simard, 1991). In contrast, we found earlier that for  $(p-CH_3ZC_6H_4)_4Sn (Z = O, S)$ , the space group  $(\overline{I4})$  is the same as for  $(p-Tol)_4$ Sn (Tol = CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>) (Karipides & Wolfe, 1975).

The effects of replacing *meta-* or *ortho-*hydrogens by larger substituents on the structures of Ar<sub>4</sub>Sn have received less attention, although *prima facie*, the former change should cause increased intermolecular interactions while the latter would result in more significant steric crowding around the tin. Since both  $(m-Tol)_4$ Sn (Karipides & Oertel, 1977) and  $(o-Tol)_4$ Sn (Belsky, Simonenko, Reikhsfeld & Saratov, 1983) crystallize in tetragonal space groups, we have examined the structures of  $(m-CH_3OC_6H_4)_4$ Sn (1) and  $(o-CH_3OC_6H_4)_4$ Sn (2) to determine the effects of larger substituents at the *meta*or *ortho-*positions.

#### **Experimental**

# Syntheses

Both title compounds were prepared using the Grignard method and characterized as described previously (Wharf & Simard, 1987). For (1), the reaction mixture was treated with methanol to yield the crude product. This was recrystallized from tetrahydrofuran (THF) and then methanol/THF (1:1) to give white plates; m.p. 361.5–362.5 K. Analysis: found: C 61.46, H 5.17;

<sup>\*</sup> The correspondence between the second structure in this paper and the first structure in the paper by J. N. Ross, J. L. Wardell, G. Ferguson & J. N. Low [*Acta Cryst.* (1994), C**50**, 1703–1709; received 18 March 1994, accepted 13 June 1994] was missed because of a subtle problem with the IUCr in-house registration software.

calc. for  $C_{28}H_{28}O_4Sn$ : C 61.46, H 5.16%. For (2) the Grignard solution was filtered before the addition of tin tetrachloride. The reaction mixture was hydrolysed (10% aqueous HCl), extracted with benzene, and methanol added to precipitate the crude product which was recrystallized from acetone to give white plates; m.p. 447–449 K. Analysis: found: C 61.39, H 5.25; calc. for  $C_{28}H_{28}O_4Sn$ : C 61.46, H 5.16%.

#### Structure determination

Anomalous dispersion terms included for the Sn atoms were obtained from Cromer & Liberman (1970); atomic scattering factors for non-H atoms from Cromer & Mann (1968), and for H atoms from Stewart, Davidson & Simpson (1965). Crystal data, data collection and structure refinement details are in Table 1.

For (1), the structure was solved by the Patterson method and difference Fourier synthesis using NRCVAX (Gabe, LePage, Charland, Lee & White, 1989) and ORTEP stereodrawings (Johnson, 1965). Full-matrix least-squares refinement based on F's, all non-H atoms anisotropic, H atoms isotropic. Rotational disorder located at one of the methoxy groups, O(4), corresponds to four extra variables added in the refinement (coordinates and isotropic temperature factor). The occupancy ratio was initially refined, then fixed in the final cycles [occ. = 0.70 (major, exo conformation); occ. = 0.30 (minor, *endo* conformation)]. H atoms were initially calculated at idealized positions  $[d(C-H,D) = 0.95 \text{ Å}, sp^2 \text{ or sp}^3 \text{ hybridization}]$ , refined in the last cycles [H(48x) excepted,  $U_{iso}$  fixed at the average value  $0.06 \text{ Å}^2$ ]. The secondary extinction coefficient was refined. The final Fourier map showed six peaks of 0.34–0.41 e Å<sup>-3</sup> at 0.86–1.37 Å from Sn; one peak of  $0.86 \, e \, \text{\AA}^{-3}$  located in the vicinity of the disordered methoxy group was not introduced in the final solution. The background was  $0.20 e \text{ Å}^{-3}$ .

For (2), the structure was solved by the Patterson method and difference Fourier synthesis using *NRCVAX* (Gabe, LePage, Charland, Lee & White, 1989) and *ORTEP* stereodrawings (Johnson, 1965). Full-matrix least-squares refinement based on *F*'s, all non-H atoms anisotropic, H atoms isotropic. H atoms were initially calculated at idealized positions  $[d(C-H,D) = 0.95 \text{ Å}, sp^2 \text{ or } sp^3 \text{ hybridization}]$ , isotropically refined in the last cycles. The secondary extinction coefficient was refined. The final Fourier map showed ten peaks of 0.36–0.55 e Å<sup>-3</sup> at 1.04–1.42 Å from Sn. The background was  $\leq 0.33$  e Å<sup>-3</sup>. Complete atom positions and thermal parameters are given in Table 2.\*

| Table | 1. | Crystal | data, | data  | collection | and | refinement |
|-------|----|---------|-------|-------|------------|-----|------------|
|       |    |         | pa    | ramet | ers        |     |            |

|                                              | (1)                                                           | (2)                                                                    |
|----------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|
| Crystal data                                 |                                                               |                                                                        |
| Chemical formula                             | [Sn(C <sub>7</sub> H <sub>7</sub> O) <sub>4</sub> ]<br>547 22 | [Sn(C <sub>7</sub> H <sub>7</sub> O) <sub>4</sub> ]                    |
| Cell setting                                 | Monoclinic                                                    | 547.22<br>Triclinic                                                    |
| Space group                                  | C2/c                                                          | PĪ                                                                     |
| a (Å)                                        | 17.534 (5)                                                    | 9.145 (6)                                                              |
| $b(\mathbf{A})$                              | 9.908 (4)                                                     | 16.562 (5)                                                             |
| $c(\mathbf{A})$                              | 30.011 (13)<br>90                                             | 18.010 (8)                                                             |
| $\vec{\beta}(\hat{\mathbf{o}})$              | 108.27 (3)                                                    | 78.52 (5)                                                              |
| $\gamma$ (°)                                 | 90                                                            | 81.70 (4)                                                              |
| $V(\mathbf{A}^3)$                            | 4951 (3)                                                      | 2597 (2)                                                               |
| Z<br>D. (Me m <sup>-3</sup> )                | o<br>1.468                                                    | 4                                                                      |
| Radiation type                               | Μο Κα                                                         |                                                                        |
| Wavelength (Å)                               | 0.70930                                                       | 1.54056                                                                |
| No. of reflections for cell                  | 25                                                            | 25                                                                     |
| parameters<br>A range for cell               | 25-35                                                         | 11 18                                                                  |
| parameters (°)                               | 25 55                                                         |                                                                        |
| $\mu ({\rm mm^{-1}})$                        | 1.06                                                          | 8.24                                                                   |
| Temperature (K)                              | 225                                                           | 290                                                                    |
| Crystal color                                | White<br>Parallelepined                                       | White<br>Beerlineined                                                  |
| Crystal form<br>Crystal size (mm)            | $0.48(001,00\bar{1}) \times 0.46$                             | Parameterpiped $0.38 (100 \ \overline{1}00) \times 0.19$               |
|                                              | $(1\bar{1}\bar{1}, \bar{1}11) \times 0.40 (100,$              | $(0\bar{1}0, 011) \times 0.11 (001, 001)$                              |
| _                                            | Ī00)                                                          | 001)                                                                   |
| Crystal source                               | Slow evaporation of a                                         | Slow evaporation of a                                                  |
|                                              | un/methanol solution                                          | methanol solution                                                      |
| Data collection                              |                                                               |                                                                        |
| Diffractometer                               | Enraf-Nonius                                                  | Enraf-Nonius                                                           |
| Data collection method                       | $\omega/2\theta$ scans                                        | $\omega/2\theta$ scans                                                 |
| Absorption correction                        | None                                                          | from crystal shape                                                     |
|                                              |                                                               | $(10 \times 10 \times 10)$                                             |
| T <sub>max</sub>                             |                                                               | 0.51                                                                   |
| T <sub>min</sub>                             | 8200                                                          | 0.13                                                                   |
| No. of measured                              | 8399                                                          | 19 394                                                                 |
| No. of independent                           | 4342                                                          | 9862                                                                   |
| reflections                                  |                                                               |                                                                        |
| No. of observed                              | 3989                                                          | 6993                                                                   |
| reflections                                  | $l > 3\sigma(l)$                                              | 1 > 3 = (D)                                                            |
| reflections                                  | 1 2 50(1)                                                     | $I \geq 5\sigma(I)$                                                    |
| R <sub>int</sub>                             | 0.023                                                         | 0.023                                                                  |
| $\theta_{max}$ (°)                           | 50.0                                                          | 140                                                                    |
| Range of h, k, l                             | $-20 \rightarrow h \rightarrow 19$                            | $-10 \rightarrow h \rightarrow 11$                                     |
|                                              | $0 \rightarrow l \rightarrow 35$                              | $0 \rightarrow k \rightarrow 20$<br>-21 $\rightarrow l \rightarrow 31$ |
| No. of standard                              | 3                                                             | 4                                                                      |
| reflections                                  | ( D                                                           |                                                                        |
| Frequency of standard                        | 60                                                            | 60                                                                     |
| Intensity decay (%)                          | $\pm 0.8$                                                     | +0.7                                                                   |
|                                              |                                                               |                                                                        |
| Refinement                                   | _                                                             |                                                                        |
| Refinement on                                | F<br>0.021                                                    | F                                                                      |
| n<br>wR                                      | 0.021                                                         | 0.037                                                                  |
| S                                            | 2.20                                                          | 1.64                                                                   |
| No. of reflections used                      | 3989                                                          | 6993                                                                   |
| No. of parameters used                       | 420                                                           | 820                                                                    |
| weignung scheme                              | $w = 1/(\sigma (F) + 0.0001F^2)$                              | $w = 1/(\sigma^{-}(F))$<br>+0.0001F <sup>2</sup> 1                     |
| $(\Delta/\sigma)_{\rm max}$                  | 0.15                                                          | 0.19                                                                   |
| $\Delta \rho_{\rm max}$ (e Å <sup>-3</sup> ) | 0.87                                                          | 0.55                                                                   |
| $\Delta \rho_{\min}$ (e Å <sup>-3</sup> )    | -0.49                                                         | -0.65                                                                  |
| Extinction correction                        | zacnariasen (1967)<br>0.462 (13)                              | Zachariasen (1967)                                                     |
| Source of atomic                             | Cromer & Mann (1968)                                          | Cromer & Mann (1968)                                                   |
| scattering factors                           | for non-H atoms and                                           | for non-H atoms and                                                    |
| -                                            | Stewart, Davidson &                                           | Stewart, Davidson &                                                    |
|                                              | Simpson (1965) for H                                          | Simpson (1965) for H                                                   |

<sup>\*</sup> Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, complete geometry and least-squares planes data have been deposited with the IUCr (Reference: BK1035). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2. Fractional atomic coordinates and equivalent isotropic displacement parameters ( $Å^2$ )

$$B_{\rm iso} = (1/3) \sum_i \sum_j B_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

|                  | x                          | v                            | z                          | Biro                 |
|------------------|----------------------------|------------------------------|----------------------------|----------------------|
| Compound         | (1)                        | ,                            | -                          | - 130                |
| Sn               | 0.310720(8)                | 0.017905 (14)                | 0.886303 (5)               | 2.114 (6)            |
| O(1)             | 0.11775 (10)               | -0.30013 (17)                | 0.95837 (6)                | 3.20 (7)             |
| 0(2)             | 0.23616 (10)               | 0.55085 (16)                 | 0.85337 (6)                | 3.25 (8)             |
| O(3)             | 0.09301 (11)               | -0.24009 (18)                | 0.74470(6)                 | 5.95 (8)             |
|                  | 0.32231(10)<br>0.24584(13) | -0.27220(21)<br>-0.03330(21) | 0.82822(7)<br>0.93336(7)   | 2.86(12)             |
| C(12)            | 0.20410 (13)               | -0.15521(21)                 | 0.92924 (7)                | 2.30(9)              |
| C(13)            | 0.16081 (12)               | -0.18441 (22)                | 0.95953 (7)                | 2.40 (9)             |
| C(14)            | 0.15917 (14)               | -0.09288 (25)                | 0.99406 (8)                | 2.92 (10)            |
| C(15)            | 0.20051 (16)               | 0.02685 (24)                 | 0.99865 (9)                | 3.05 (10)            |
| C(16)            | 0.24382 (14)               | 0.05701 (23)                 | 0.96838 (8)                | 2.67 (10)            |
| C(17)            | 0.11392 (15)               | -0.39380 (26)                | 0.92209 (9)                | 3.45 (11)            |
| C(21)            | 0.33944(13)<br>0.27788(13) | 0.22790(21)<br>0.31910(21)   | 0.89407 (7)                | 2.27(9)              |
| C(22)            | 0.29292 (14)               | 0.45587 (22)                 | 0.87462 (8)                | 2.43 (9)             |
| C(24)            | 0.36928 (15)               | 0.50489 (21)                 | 0.89842 (8)                | 2.61 (10)            |
| C(25)            | 0.42971 (14)               | 0.41517 (25)                 | 0.92024 (8)                | 2.83 (9)             |
| C(26)            | 0.41530 (13)               | 0.27766 (23)                 | 0.91817 (8)                | 2.57 (10)            |
| C(27)            | 0.16299 (18)               | 0.50026 (25)                 | 0.82202 (11)               | 4.13 (12)            |
| C(31)            | 0.23794 (14)               | -0.00640 (21)                | 0.81444 (8)                | 2.40 (9)             |
| C(32)            | 0.18944 (14)               | -0.11812(22)<br>0.12220(22)  | 0.80030(7)                 | 2.55 (9)             |
| C(34)            | 0.13845(15)                | -0.03381(26)                 | 0.73413 (8)                | 3.20(11)             |
| C(35)            | 0.18819(16)                | 0.07713 (28)                 | 0.73550(9)                 | 3.20(11)<br>3.67(12) |
| C(36)            | 0.23723 (15)               | 0.09150 (24)                 | 0.78105 (8)                | 3.20 (11)            |
| C(37)            | 0.04156 (17)               | -0.26787 (33)                | 0.69818 (9)                | 4.62 (14)            |
| C(41)            | 0.41511 (12)               | -0.10565 (20)                | 0.89830 (7)                | 2.23 (9)             |
| C(42)            | 0.43764 (14)               | -0.14758 (22)                | 0.86024 (7)                | 2.65 (9)             |
| C(43)            | 0.50342 (15)               | -0.23271 (23)                | 0.86669 (9)                | 3.20(11)             |
| C(44)            | 0.54700 (14)               | -0.27545 (24)                | 0.91120 (9)                | 3.35 (11)            |
| C(45)            | 0.32483(14)<br>0.45893(14) | -0.23351(23)<br>-0.14943(23) | 0.94894 (8)                | 3.22(10)             |
| C(47)*           | 0.56782 (25)               | -0.38386(44)                 | 0.94209(0)<br>0.83061(17)  | 4 95 (21)            |
| C(48)*           | 0.50392 (54)               | -0.22474 (99)                | 0.78525 (29)               | 4.03 (42)            |
| . ,              | . ,                        |                              | . ,                        |                      |
| Compound         | 1(2)                       |                              |                            |                      |
| Sn(1)            | 0.25660 (4)                | 0.27909 (2)                  | 0.20290 (2)                | 3.957 (14)           |
| Sn(2)            | 0.99341(4)<br>0.0837(4)    | 0.77425(2)<br>0.4530(2)      | 0.30005(2)                 | 5.08 (13)            |
| O(11)            | 0.0837(4)<br>0.0773(4)     | 0.4339(2)<br>0.1346(2)       | 0.1054(2)<br>0.2867(2)     | 6 70 (22)            |
| O(12)            | 0.4062 (4)                 | 0.1890 (2)                   | 0.0700 (2)                 | 6.55 (21)            |
| O(14)            | 0.4944 (4)                 | 0.3263 (2)                   | 0.2852 (2)                 | 5.60 (20)            |
| O(21)            | 1.1486 (4)                 | 0.6023 (2)                   | 0.3572 (2)                 | 5.15 (18)            |
| O(22)            | 1.1769 (4)                 | 0.9072 (2)                   | 0.1942 (2)                 | 5.63 (19)            |
| O(23)            | 0.8494 (4)                 | 0.8803 (2)                   | 0.4238 (2)                 | 5.37 (18)            |
| O(24)            | 0.7555 (4)                 | 0.6970 (2)                   | 0.2410 (2)                 | 5.38 (19)            |
| C(111)           | 0.0903 (5)                 | 0.3477(3)                    | 0.2/38(3)                  | 4.1 (2)              |
| C(112)           | -0.0527(5)                 | 0.4282(3)<br>0.4769(3)       | 0.2434 (3)                 | 4.0(2)               |
| C(114)           | -0.1138(6)                 | 0.4442 (3)                   | 0.3655 (3)                 | 5.2 (3)              |
| C(115)           | -0.0617 (6)                | 0.3649 (3)                   | 0.3980 (3)                 | 5.4 (3)              |
| C(116)           | 0.0404 (6)                 | 0.3174 (3)                   | 0.3518 (3)                 | 4.9 (3)              |
| C(117)           | 0.0316 (7)                 | 0.5353 (3)                   | 0.1297 (3)                 | 5.9 (3)              |
| C(121)           | 0.3279 (6)                 | 0.1591 (3)                   | 0.2673 (3)                 | 4.6 (3)              |
| C(122)           | 0.2212 (6)                 | 0.1027 (3)                   | 0.2964 (3)                 | 5.1 (3)              |
| C(123)           | 0.2631(7)<br>0.4125(8)     | -0.0211(3)                   | (0.3318(3))<br>(0.3378(4)) | 0.4(3)               |
| C(124)           | 0.4123(3)<br>0.5170(7)     | 0.0509 (4)                   | 0.3099 (4)                 | 7.8 (4)              |
| C(126)           | 0.4744 (6)                 | 0.1319 (3)                   | 0.2755 (3)                 | 6.0 (3)              |
| C(127)           | -0.0321 (8)                | 0.0811 (4)                   | 0.2988 (4)                 | 8.3 (4)              |
| C(131)           | 0.1699 (5)                 | 0.2561 (3)                   | 0.1079 (3)                 | 4.4 (2)              |
| C(132)           | 0.2606 (6)                 | 0.2105 (3)                   | 0.0566 (3)                 | 4.6 (2)              |
| C(133)           | 0.2076 (7)                 | 0.1881 (3)                   | -0.0021 (3)                | 6.2 (3)              |
| C(134)           | 0.0608 (8)                 | 0.2130 (4)                   | -0.0103 (4)                | 7.7 (4)              |
| C(135)           | -0.0313 (7)                | 0.2584 (4)                   | 0.0380(4)                  | /.9(4)<br>6 2 (2)    |
| C(130)<br>C(137) | 0.0212(0)                  | 0.2790 (3)                   | 0.0974 (4)                 | 0.2 (3)<br>8 5 (4)   |
| C(141)           | 0.4484 (5)                 | 0.3471 (3)                   | 0.1584 (3)                 | 3.7 (2)              |
| C(142)           | 0.5399 (5)                 | 0.3589 (3)                   | 0.2083 (3)                 | 4.1 (2)              |

|        | Table 2 (cont.) |            |            |         |  |  |
|--------|-----------------|------------|------------|---------|--|--|
|        | x               | у          | Z          | Biso    |  |  |
| C(143) | 0.6658 (6)      | 0.4024 (3) | 0.1805 (3) | 5.2 (3) |  |  |
| C(144) | 0.6997 (6)      | 0.4335 (3) | 0.1019 (3) | 5.4 (3) |  |  |
| C(145) | 0.6131 (6)      | 0.4235 (3) | 0.0522 (3) | 5.0 (3) |  |  |
| C(146) | 0.4879 (5)      | 0.3800 (3) | 0.0804 (3) | 4.3 (2) |  |  |
| C(147) | 0.5979 (8)      | 0.3168 (5) | 0.3360 (4) | 9.5 (5) |  |  |
| C(211) | 1.1627 (5)      | 0.6955 (3) | 0.2403 (3) | 3.6(2)  |  |  |
| C(212) | 1.2117 (5)      | 0.6177 (3) | 0.2802 (3) | 4.1 (2) |  |  |
| C(213) | 1.3142(6)       | 0.5618 (3) | 0.2435 (5) | 4.7 (2) |  |  |
| C(214) | 1.3704 (6)      | 0.5854 (3) | 0.1655 (3) | 5.2 (3) |  |  |
| C(215) | 1.3271 (6)      | 0.6623 (3) | 0.1246 (3) | 4.9 (2) |  |  |
| C(216) | 1.2234 (5)      | 0.7169 (3) | 0.1620 (3) | 4.1 (2) |  |  |
| C(217) | 1.1963 (7)      | 0.5261 (3) | 0.4036 (3) | 6.5 (3) |  |  |
| C(221) | 0.9273 (5)      | 0.8797 (3) | 0.2161 (3) | 4.0 (2) |  |  |
| C(222) | 1.0378 (6)      | 0.9296 (3) | 0.1734 (3) | 4.4 (2) |  |  |
| C(223) | 1.0063 (7)      | 0.9971 (3) | 0.1166 (3) | 6.1 (3) |  |  |
| C(224) | 0.8618 (8)      | 1.0148 (4) | 0.1029 (4) | 7.8 (4) |  |  |
| C(225) | 0.7496(7)       | 0.9683 (4) | 0.1442 (4) | 7.3 (4) |  |  |
| C(226) | 0.7837 (6)      | 0.8997 (3) | 0.2002 (3) | 5.4 (3) |  |  |
| C(227) | 1.2965 (7)      | 0.9535 (4) | 0.1534 (4) | 7.8 (4) |  |  |
| C(231) | 1.0835 (6)      | 0.8094 (3) | 0.3878 (3) | 4.1 (2) |  |  |
| C(232) | 0.9920(6)       | 0.8558 (3) | 0.4388 (3) | 4.3 (2) |  |  |
| C(233) | 1.0451 (6)      | 0.8751 (3) | 0.4995 (3) | 5.3 (3) |  |  |
| C(234) | 1.1920(7)       | 0.8482 (3) | 0.5088 (3) | 6.1 (3) |  |  |
| C(235) | 1.2859 (6)      | 0.8037 (3) | 0.4584 (3) | 5.5 (3) |  |  |
| C(236) | 1.2318 (6)      | 0.7836(3)  | 0.3987 (3) | 4.6 (2) |  |  |
| C(237) | 0.7376(7)       | 0.9103 (4) | 0.4813 (4) | 7.4 (4) |  |  |
| C(241) | 0.8062 (5)      | 0.7073 (3) | 0.3597 (3) | 4.0 (2) |  |  |
| C(242) | 0.7150 (5)      | 0.6798 (3) | 0.3198 (3) | 4.3 (2) |  |  |
| C(243) | 0.5920(6)       | 0.6362(3)  | 0.3587 (3) | 5.8 (3) |  |  |
| C(244) | 0.5655 (6)      | 0.6198 (3) | 0.4380 (4) | 6.6 (3) |  |  |
| C(245) | 0.6560(7)       | 0.6452(3)  | 0.4789 (3) | 6.2 (3) |  |  |
| C(246) | 0.7759 (6)      | 0.6887 (3) | 0.4396 (3) | 5.0 (2) |  |  |
| C(247) | 0.6587 (8)      | 0.6782 (4) | 0.1954 (4) | 7.8 (4) |  |  |

\* Corresponding to the disordered methoxy group [occ. C(47) = 0.70; occ. C(48) = 0.30].

## Results

Selected bond lengths and angles for compounds (1) and (2) are given in Tables 3 and 4, respectively, with numbering schemes in Figs. 1 and 2. In addition, refined H-atom positions (deposited) give for (1): d(C-H) =0.89-1.10 Å [av. 0.97 (5);  $B_{iso} = 1.6-6.3 \text{ Å}^2$  (av. 4.0)] and for (2): d(C-H) = 0.92-1.02 Å [av. 0.97 (2);  $B_{iso}$  $= 4.5 - 11.0 \text{ Å}^2$  (av. 7.5)]. Both (1) and (2) crystallize in non-tetragonal space groups C2/c and P1, respectively. Stereoviews of the unit cells showing the crystal packing are shown in Figs. 3 and 4 for (1) and (2), respectively. For (1), the Sn atoms lie on general positions and, therefore, the molecules are asymmetric, as are those of (2).

# Discussion

The symmetries of  $Ar_4M$  molecules, even those with 'ideal' tetrahedral  $C_4M$  skeletons, vary depending on the aryl ring orientations. These can be expressed by the dihedral angle  $\varphi$  (the angle between the aryl ring plane and the CSnC plane containing the principal axis). In addition, the geometry around the central atom can be summarized by values of d(Sn-C) and the angles  $\theta$  and  $\beta$  (Fig. 5). When the aryl groups have meta- or orthosubstituents, the molecular symmetry will also depend on whether the substituents are exo (directed away from the equatorial plane,  $0 < \varphi < 90^{\circ}$ ) or *endo* (90 <  $\varphi < 180^{\circ}$ ).

## STUDIES IN ARYLTIN CHEMISTRY. IX

| Table 3. Selected                     | l geometric  | parameters (Å, °)                    | for (1)    |
|---------------------------------------|--------------|--------------------------------------|------------|
| Sn—C(11)                              | 2.134 (2)    | Sn—C(31)                             | 2.148 (2)  |
| Sn—C(21)                              | 2.138 (2)    | Sn-C(41)                             | 2.137 (2)  |
| O(1)—C(13)                            | 1.367 (3)    | O(3)—C(33)                           | 1.367 (2)  |
| O(1)-C(17)                            | 1.416(3)     | O(3)—C(37)                           | 1.424 (2)  |
| O(2)—C(23)                            | 1.373 (2)    | O(4)—C(43)                           | 1.355 (3)  |
| O(2)—C(27)                            | 1.423 (2)    | O(4)—C(47)                           | 1.353 (5)  |
|                                       |              | O(4)—C(48)                           | 1.314 (9)  |
| $C(48) \cdot \cdot \cdot C(48^{i})$   | 2.08 (2)     | $C(48) \cdot \cdot \cdot H(48B^{i})$ | 1.71       |
| $C(48) \cdot \cdot \cdot H(48A^{i})$  | 1.87         | $C(48) \cdot \cdot \cdot H(48C^{i})$ | 2.29       |
| $H(48A) \cdot \cdot \cdot H(48A')$    | 1.94         | $H(48B) \cdot \cdot \cdot H(48B')$   | 1.76       |
| $H(48A) \cdot \cdot \cdot H(48B^{1})$ | 1.12         | $H(48B) \cdot \cdot \cdot H(49C')$   | 2.07       |
| $H(48A) \cdot \cdot \cdot H(48C')$    | 2.29         | $H(48C) \cdot \cdot \cdot H(48C')$   | 2.10       |
| $H(47A) \cdot \cdot \cdot H(48A')$    | 2.22         | $H(22) \cdot \cdot \cdot H(47C^n)$   | 2.19 (5)   |
| C(11)—Sn—C(21)                        | 107.97 (8)   | C(21)—Sn—C(41)                       | 112.35 (8) |
| C(11)—Sn—C(31)                        | 111.46 (9)   | C(31)—Sn—C(41)                       | 108.23 (8) |
| C(11)—Sn—C(41)                        | 111.01 (8)   | C(23)—O(2)—C(27)                     | 116.0(2)   |
| C(13)—O(1)—C(17)                      | 117.5 (2)    | O(2)—C(23)—C(22)                     | 123.7 (2)  |
| O(1) - C(13) - C(12)                  | 124.8 (2)    | O(2)—C(23)—C(24)                     | 116.1 (2)  |
| O(1) - C(13) - C(14)                  | 115.3 (2)    | C(43)—O(4)—C(47)                     | 119.3 (3)  |
| C(33)—O(3)—C(37)                      | 118.7 (2)    | O(4)—C(43)—C(42)                     | 118.0(2)   |
| O(3)—C(33)—C(32)                      | 115.8 (2)    | O(4)—C(43)—C(44)                     | 121.8 (2)  |
| O(3)—C(33)—C(34)                      | 124.4 (2)    | C(43)—O(4)—C(48)                     | 133.0 (5)  |
| C(21)—Sn— $C(31)$                     | 105.73 (8)   |                                      |            |
| C(17)—O(1                             | )-C(13)-C(12 | 2) -3.3 (1)                          |            |
| C(27)—O(2                             | )-C(23)-C(22 | (2) - 10.7(1)                        |            |
| C(37)—O(3                             | )-C(33)-C(32 | 2) -179.5 (3)                        |            |
| C(47)—O(4                             | )-C(43)-C(42 | 2) -159.7 (3)                        |            |
| C(48)—O(4                             | )—C(43)—C(42 | 2) 18.7 (4)                          |            |
| C(17)—O(1                             | )-C(13)-C(14 | 4) 176.7 (2)                         |            |
| C(27)—O(2                             | )-C(23)-C(24 | 4) 168.7 (2)                         |            |
| C(37)—O(3                             | )-C(33)-C(34 | 4) 0.4 (1)                           |            |
| C(47)—O(4                             | )—C(43)—C(44 | 4) 19.8 (2)                          |            |
| C(48)—O(4                             | )—C(43)—C(44 | 4) -161.8 (5)                        |            |

Table 4 Selected geometric parameters ( $^{\text{A}}$  °) for (2)

| -O(4) $-C(43)$ $-C(44)$            | - 161.8 (5)                 |                       |
|------------------------------------|-----------------------------|-----------------------|
| codes: (i) $1 - x, y, \frac{3}{2}$ | $-z;$ (ii) $x-\frac{1}{2},$ | $\frac{1}{2}$ + y, z. |

Thus, where all aryl rings are rotated to the same degree, *e.g.* the anticlockwise all-*exo* conformation shown in Fig. 5, the molecule has  $\overline{4}$  symmetry, if d(Sn-C),  $\theta$  and  $\beta$  have unique values (Table 5).

Symmetry

For both (1) and (2), the central  $C_4Sn$  geometries (Table 5) show the molecules are asymmetric with apparently similar distortions from the 'ideal'  $\overline{4}$  symmetry. However, study of the conformations of the aryl rings in the two structures enables more fruitful structural comparisons to be made with each other or with the  $\overline{4}$  symmetries listed in Table 5. For example, the view of (1) down the putative principal axis taken through the centres of angles C(11)—Sn—C(41) and C(21)—Sn—C(31) (Fig. 6) shows the molecule has no symmetry whatsoever, with two of the four aryl groups endo rather than exo, and large variations in the dihedral angles. Equally irregular structures are apparent when the molecule is viewed down the two other principal axes. In contrast, the equivalent view of either of the two molecules forming the asymmetric unit of (2) (Fig. 7) shows both to have pseudo-4-symmetry with all CH<sub>3</sub>O groups exo [ $\varphi \simeq 61^{\circ}$  (av.)], thus closely resembling the  $\overline{4}$  structure of  $(o-Tol)_4$ Sn.

The loss of  $\overline{4}$  symmetry when a *meta*- or *ortho*-CH<sub>3</sub> group is replaced by a methoxy group is clearly related to the more exacting steric requirements of the CH<sub>3</sub>O group, which remains coplanar with the phenyl

| Tuble 4. Detected                             | . 800/10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | purumeners (II, )                   | JOI (2)   |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|
| Sn(1)—C(111)                                  | 2.140 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sn(2)—C(211)                        | 2.146 (4) |
| Sn(1)—C(121)                                  | 2.160 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sn(2)—C(221)                        | 2.154 (4) |
| Sn(1)—C(131)                                  | 2.146 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sn(2)—C(231)                        | 2.137 (4) |
| Sn(1)—C(141)                                  | 2.148 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sn(2)—C(241)                        | 2.151 (5) |
| O(11)—C(112)                                  | 1.383 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(21)—C(212)                        | 1.376 (6) |
| O(11)—C(117)                                  | 1.422 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(21)—C(217)                        | 1.420 (6) |
| O(12) - C(122)                                | 1.376 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(22)—C(222)                        | 1.375 (6) |
| O(12)—C(127)                                  | 1.385 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(22)—C(227)                        | 1.417 (7) |
| O(13)—C(132)                                  | 1.382 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(23)—C(232)                        | 1.372 (6) |
| O(13)—C(137)                                  | 1.400 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(23)—C(237)                        | 1.420 (7) |
| O(14)—C(142)                                  | 1.377 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(24)—C(242)                        | 1.371 (6) |
| O(14)—C(147)                                  | 1.413 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(24)—C(247)                        | 1.426 (7) |
| $Sn(1) \cdots O(11)$                          | 3 100 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sn(2) · · · $O(21)$                 | 3 059 (3) |
| $Sn(1) \cdots O(12)$                          | 3 051 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sn(2) + O(22)                       | 3 051 (4) |
| $Sn(1) \cdots O(13)$                          | 3 075 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sn(2) + O(23)                       | 3 101 (3) |
| $Sn(1) \cdots O(14)$                          | 3.131 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Sn(2) \cdot \cdot \cdot O(24)$     | 3.131 (3) |
|                                               | 5.151(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01(2) 0(2)                          | 5.151 (5) |
| C(111) - Sn(1) - C(121)                       | 111.2 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(232)—O(23)—C(237)                 | 119.1 (4) |
| C(111) - Sn(1) - C(131)                       | 111.2 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(242)—O(24)—C(247)                 | 118.4 (4) |
| C(111) - Sn(1) - C(141)                       | 110.0 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(11)—C(112)—C(111)                 | 114.3 (4) |
| C(121) - Sn(1) - C(131)                       | 106.6 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(11)—C(112)—C(113)                 | 123.8 (4) |
| C(121) - Sn(1) - C(141)                       | 108.9 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(12)—C(122)—C(121)                 | 114.4 (4) |
| C(131) - Sn(1) - C(141)                       | 108.9 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(12)—C(122)—C(123)                 | 124.9 (5) |
| $C(112) \rightarrow O(11) \rightarrow C(117)$ | 118.1 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(13)—C(132)—C(131)                 | 114.3 (4) |
| $C(122) \rightarrow O(12) \rightarrow C(127)$ | 119.5 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(13)—C(132)—C(133)                 | 123.6 (5) |
| $C(132) \rightarrow O(13) \rightarrow C(137)$ | 119.1 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(14) - C(142) - C(141)             | 115.3 (4) |
| C(142) - O(14) - C(147)                       | 118.5 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(14)—C(142)—C(143)                 | 123.6 (4) |
| C(211) - Sn(2) - C(221)                       | 107.6 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(21)—C(212)—C(211)                 | 114.0 (4) |
| C(211) - Sn(2) - C(231)                       | 108.7 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(21) - C(212) - C(213)             | 124.3 (4) |
| C(211) - Sn(2) - C(241)                       | 110.7 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(22) - C(222) - C(221)             | 114.5 (4) |
| C(221) - Sn(2) - C(231)                       | 112.4 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(22) - C(222) - C(223)             | 123.6 (4) |
| C(221) = Sn(2) = C(241)                       | 111.8 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(23) - C(232) - C(231)             | 114.8 (4) |
| C(231) - Sn(2) - C(241)                       | 105.6 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(23) - C(232) - C(233)             | 123.9 (4) |
| $C(212) \rightarrow O(21) \rightarrow C(217)$ | 118.3 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(24) - C(242) - C(241)             | 115.0 (4) |
| $C(222) \rightarrow O(22) \rightarrow C(227)$ | 118.5 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(24) - C(242) - C(243)             | 123.7 (4) |
| C(117)—O(                                     | 11)—C(112)—(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(111) - 179.6(6)                   |           |
| C(127)—O(                                     | 12)—C(122)—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(121) 167.1 (7)                    |           |
| C(137)—O(                                     | 13)—C(132)—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(131) - 176.9(7)                   |           |
| C(147)—O(                                     | 14)—C(142)—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(141) 164.3 (7)                    |           |
| C(217)—O(                                     | 21)—C(212)—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(211) = 177.3(7)                   |           |
| C(227)—O(                                     | 22)—C(222)—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(221) 179.1 (7)                    |           |
| C(237)—O(                                     | 23) - C(232) - C(23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(231) 165.4 (7)                    |           |
| C(247) = O(247) = O(247)                      | $(24) \rightarrow C(242) \rightarrow C(24) \rightarrow C(24$ | C(241) = 1/3.8(7)                   |           |
| C(117)=0(                                     | (12) - C(112) - C(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(113) = 0.9(4)<br>C(123) = 12.8(4) |           |
| C(127) = O(127)                               | 12 - (122) - (122) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) - (132) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(123) = 12.0(4)<br>C(133) = 3.8(4) |           |
| C(137)O(<br>C(147)O(                          | 14 - C(142) - C(142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(133) = 170(4)                     |           |
| C(217)-O                                      | (21) - C(212) - C(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C(213) \qquad 34(4)$               |           |
| C(227)-O                                      | 22) - C(222) - C(22) - C(22) - C(22) - C(222) - C(222)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(223) -2.6(4)                      |           |
| C(237)-O(                                     | 23) - C(232) - C(23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(233) - 15.0(4)                    |           |
| C(247)-O(                                     | 24)—C(242)—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(243) 7.4 (4)                      |           |
|                                               | _ / / .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | / · · · · · /                       |           |

ring as in  $(p-CH_3OC_6H_4)_4Sn$  (Wharf & Simard, 1987). This preferred planarity, which is ascribed to  $2p_0 - \pi_{ring}$ conjugation with a barrier to internal rotation about the O—Csp<sup>2</sup> bond of ca 25 kJ mol<sup>-1</sup> (Schaeffer et al., 1984), however, still allows for two methoxy group orientations when there are no adjacent substituents on the phenyl ring (Schaeffer, Salman, Wildman & Penner, 1985). In fact, in (1) the close packing in the cell (Fig. 3) prevents this disorder occurring, with m-CH<sub>3</sub>O groups on rings (1) and (2) directed towards the centre of the molecule and on ring (3) away from the central tin atom. Only for ring (4) is the disorder expected for a methoxy group almost coplanar with a phenyl ring observed (Fig. 1). However, the short intermolecular interatomic distances required (Table 3) when both neighbouring ring (4) units on adjacent molecules have the CH<sub>3</sub>O groups oriented towards the central tin would suggest this arrangement does not occur in practice. Thus, the occupancy ratio (67:33) predicted on this basis for CH<sub>3</sub>O on ring (4) is almost the same as that found (70:30). Indeed, the exigent packing requirements of the minor occupancy arrangement of the CH<sub>3</sub>O group may account for the distortions observed from its usual geometry, *e.g.*  $C_{sp^2}$ OCH<sub>3</sub> = 133° compared with the usual 119°, the larger distance between adjacent non-bonded carbons, 2.94 Å compared with 2.8 Å (av.) usually observed, and the shorter (O—CH<sub>3</sub>) bond length.



Fig. 1. ORTEP (50% probability level) drawing of the molecule forming the asymmetric unit in (1), showing the disorder present for one of the methoxy groups.



The consequences of substituent position on  $Ar_4Sn$  structures as hydrogen is replaced by  $CH_3$  and then  $CH_3O$  groups are now apparent. In the *para*-position, the effect is minimal with the larger  $CH_3O$  group and its enforced coplanarity readily accommodated in a structure which retains the  $\overline{4}$  molecular ground state and the close packing required to minimize free volume in molecular crystals (Brock & Dunitz, 1994).

With the *meta*-substituents, the consequences are dire with, first, the loss of close packing in  $(m\text{-Tol})_4\text{Sn}(I4_1/a)$ and then in (1), the complete loss of crystal and molecular symmetry (Fig. 6). Thus, the extramolecular steric requirements of *meta*-CH<sub>3</sub>O groups require the loss of  $\overline{4}$  molecular symmetry so that the asymmetric molecules have the necessary bumps and hollows (Kitaigorodskii, 1961) to provide the close packing which can then achieve the structure with overall maximum stability.

In the case of *ortho*-substituents, intramolecular effects appear to predominate with  $(o-\text{Tol})_4$ Sn  $(P\bar{4}2_1c)$  retaining  $\bar{4}$  symmetry as predicted for  $(o-\text{Tol})_4$ Si, while



Fig. 2. ORTEP (40% probability level) drawing of molecule A in the asymmetric unit of (2).



Fig. 3. Stereoview for (1).





Fig. 4. Stereoview for (2).

in (2), the deviation (Fig. 7) from this symmetry is relatively small. However, (o-Tol)<sub>4</sub>Ge ( $P\bar{1}$ ) (Belsky, Simonenko & Reikhsfeld, 1984) also has the loss of molecular symmetry as well as bending of the o-CH<sub>3</sub> groups away from the central metal atom. Thus, the close packing of these sterically crowded identical Ar<sub>4</sub>M may require a molecular distortion causing a slight increase in the already high molecular energy (compared with Ph<sub>4</sub>M), but yielding molecules with complementary surfaces, such as die and coin (Pauling & Delbrück, 1940), which are needed to achieve the maximum crystal stability.

Both (o-Tol)<sub>4</sub>Ge and (2) have like molecules packing across inversion centres. In addition, in (2) the two independent molecules in the asymmetric unit which clearly bear a close resemblance appear to pack across a pseudo-inversion centre (Fig. 4) which, calculated as



 
 Table 5. Molecular parameters for substituted tetraaryltins

| Compound                                                                                    | Mol    | Molecular angles (°)* |       |           |  |
|---------------------------------------------------------------------------------------------|--------|-----------------------|-------|-----------|--|
| (Space group)                                                                               | ø      | $\theta$              | β     | (Å)       |  |
| $(C_6H_5)Sn^{\dagger}$<br>(P42,c)                                                           | 56.5   | 110.5                 | 108.9 | 2.143 (5) |  |
| $(p-CH_3C_6H_4)_4Sn^{\dagger}$                                                              | 48.4   | 114.4                 | 107.0 | 2.147 (6) |  |
| (p-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> ) <sub>4</sub> Sn†<br>(I4)                | 52.1   | 112.5                 | 108.0 | 2.136 (4) |  |
| $(m-CH_3C_6H_4)_4Sn^{\dagger}$<br>$(I4_1/a)$                                                | 40.7   | 109.3                 | 109.5 | 2.150 (3) |  |
|                                                                                             | 70.2   |                       | 108.0 | 2.134 (2) |  |
| (m-CH <sub>2</sub> OC <sub>4</sub> H <sub>4</sub> ),Snt                                     | -142.8 | 111.0                 | 111.5 | 2.137 (2) |  |
| (C2/c)                                                                                      | 41.2   |                       | 112.4 | 2.138 (2) |  |
| (                                                                                           | -160.4 | 105.7                 | 108.2 | 2.148 (2) |  |
| (o-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> ) <sub>4</sub> Sn§<br>(P42 <sub>1</sub> c) | 52.8   | 113.7                 | 107.4 | 2.145 (3) |  |
|                                                                                             | 59.0   | 110.0                 | 111.2 | 2.140 (5) |  |
|                                                                                             | 67.5   |                       | 108.9 | 2.148 (5) |  |
| (o-CH <sub>1</sub> OC <sub>6</sub> H <sub>4</sub> ) <sub>4</sub> Sn¶                        | A 61.0 | 106.6                 | 111.2 | 2.160 (5) |  |
| (PĪ)                                                                                        | 59.1   |                       | 108.9 | 2.146 (5) |  |
|                                                                                             | 50.6   | 110.7                 | 107.6 | 2.146 (4) |  |
|                                                                                             | 67.7   |                       | 111.8 | 2.151 (5) |  |
|                                                                                             | B 60.1 | 112.4                 | 108.7 | 2.154 (4) |  |
|                                                                                             | 64.4   |                       | 105.6 | 2.137 (4) |  |

\* See text, Fig. 5.

† Data from Wharf & Simard (1987).

 $\ddagger$  Assignment:  $\varphi$ , Fig. 6;  $\theta$ ,  $\beta$ , d(Sn-C), Table 3.

§Calculated from the data of Belsky, Simonenko, Reikhsfeld & Saratov (1983).

¶ Assignment:  $\varphi$ , Fig. 7;  $\theta$ ,  $\beta$ , d(Sn-C), Table 4.

the centroid of the non-H atoms of the asymmetric unit, is located at a general position [0.628 (5), 0.522 (9), 0.252 (14)]. Whether this position actually represents a pseudo-inversion centre according to the accepted criteria (Desiraju, Calabrese & Harlow, 1991) was not determined but more evident is the pseudo-translation



Fig. 5. Views of idealized  $(m-XC_6H_4)_4$ Sn with  $\overline{4}$  symmetry: (a) perpendicular to the  $\overline{4}$  axis showing bond angles  $\theta$  and  $\beta$ ; (b) down a Sn—C bond showing the dihedral angle  $\varphi$ .

Fig. 6. View of molecule (1) perpendicular to the axis bisecting angles C(11)—Sn—C(41) and C(21)—Sn—C(31).

[0.256 (2), 0.044 (3), 0.497 (5)] determined from the positions of the two molecules in the asymmetric unit of (2) (Table 2). This translation  $(\frac{1}{4}, 0, \frac{1}{2})$  requires spacegroup extinctions for reflections h/2 + 1 = 2n + 1 and h = 2n (Stout & Jensen, 1968), and inspection of the structure-factor table (Table 2, S7, deposited material) indeed shows these reflections are systematically weak. The almost tetragonal pseudo-symmetry thus generated for (2), by assuming molecules A and B are essentially identical, is made clear with the projection obtained by viewing the unit cell down the pseudo- $\overline{4}$  axis of molecule A (Fig. 8a). Thus, the distortion from tetragonal symmetry is small for both the molecular and crystal lattice pictures. However, the complete view of the quasi-tetragonal unit cell which can be assembled (Fig.





# **Concluding remarks**

The overall stability of Group 14 tetra-aryls clearly reflects the need to attain the lowest-energy molecular conformation consonant with the close-packing required to achieve maximum lattice stability. With increasing



Fig. 7. Views of molecules A and B of (2) perpendicular to the pseudo- $\overline{4}$  axis.

(b)

Fig. 8. (a) Projection of the unit cell of (2) looking down the pseudo- $\overline{4}$  axis of molecule A. The pseudo- $\overline{4}$  axis for molecule B is approximately 15° away from the perpendicular. (b) View of the pseudo-tetragonal unit cell in (2) showing the distortion from tetragonal symmetry.

size of para- or meta-substituents, close packing of  $\overline{4}$  ground state molecules becomes less feasible. This then induces a lowering of both molecular and lattice symmetry so as to re-establish close packing. This effect is more pronounced with meta-substituents with the molecular structure of (1) clearly deviant from the 4 ground state. With ortho-substituents, the packing requirements of  $Ar_4M$  are less problematic. However, the greater steric crowding in the molecules produces an increase in their absolute potential energy (compared with the tetraphenyl archetype), which can then be compensated, as in (2), by a relatively small deviation from  $\overline{4}$  symmetry so as to enable more efficient crystal packing to occur. Thus, following on from the pioneering work of Kitaigorodskii (1961), the molecular mechanics calculations now needed must take into account both intra- and intermolecular interactions when predicting the most stable structure for a given Group 14 tetra-aryl derivative in the solid state.

The Fonds FCAR (Programme ACC) of the Gouvernement du Québec is thanked for support as well as the Department of Chemistry, McGill University, and, in particular, Professor Onyszchuk for the facilities where part of this work was carried out.

#### References

AHMED, N. A., KITAIGORODSKII, A. I. & MIRSKAYA, K. V. (1971). Acta Cryst. B27, 867-870.

- BELSKY, V. K., SIMONENKO, A. A. & REIKHSFELD, V. O. (1984). J. Organomet. Chem. 265, 141-143.
- BELSKY, V. K., SIMONENKO, A. A., REIKHSFELD, V. O. & SARATOV, E. (1983). J. Organomet. Chem. 244, 125-128.
- BROCK, C. P. & DUNITZ, J. D. (1994). Chem. Mater. 6, 1118-1127.
- CHARISÉE, M., ROLLER, S. & DRÄGER, M. (1992). J. Organomet. Chem. 427, 23-31.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891-1898.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- DESIRAJU, G. R., CALABRESE, J. C. & HARLOW, R. L. (1991). Acta Cryst. B47, 77-86.
- GABE, E. J., LEPAGE, Y., CHARLAND, J.-P., LEE, F. L. & WHITE, P. S. (1989). J. Appl. Cryst. 22, 384–387. Howie, R. A., Ross, J.-N., Wardell, J. L. & Low, J. N. (1994). Acta
- Cryst. C50, 229-231.
- HUTCHINGS, M. G., ANDOSE, J. D. & MISLOW, K. (1975). J. Am. Chem. Soc. 97, 4553-4561.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- KARIPIDES, A. & OERTEL, M. (1977). Acta Cryst. B33, 683-687.
- KARIPIDES, A. & WOLFE, K. (1975). Acta Cryst. B31, 605-608.
- KITAIGORODSKII, A. I. (1961). Organic Chemical Crystallography, pp. 124-128, 404-406. New York: Consultants Bureau.
- PAULING, L. & DELBRÜCK, M. (1940). Science, 92, 77-79.
- Ross, J.-N. & WARDELL, J. L. (1994). Acta Ciyst. C50, 1207-1209.
- SCHAEFFER, T., LAATIKAINEN, R., WILDMAN, T. A., PEELING, J., PENNER, G. H., BALEJA, J. & MARAT, K. (1984). Can. J. Chem. 62, 1592-1597.
- SCHAEFFER, T., SALMAN, S. R., WILDMAN, T. A. & PENNER, G. H. (1985). Can. J. Chem. 63, 782-786.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
- STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure Determination, A Practical Guide, Appendix D, pp. 443-444. New York: MacMillan.
- WHARF, I. & SIMARD, M. G. (1987). J. Organomet. Chem. 332, 85-94.
- WHARF, I. & SIMARD, M. G. (1991). Acta Cryst. C47, 1314-1315.
- WHARF, I., SIMARD, M. G. & LAMPARSKI, H. (1990). Can. J. Chem. 68, 1277-1282
- ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558-564.